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PREFACE

A surprising variety of seemingly unrelated problems can De

described by the analog of flow in a network. Analysts were prestrited

with both a very general algorithm and a very efficient code for finding

solutions to a variety of network flow problems, with the distributioQ

of R. Clasen's computr code for this algorithm (SHARE, RS OKPI), and

the publication by D. R. Fulkerson, "An Out-of-Kilter Method for Minimal

Cost Flow Problems," J. Soc. Indust. Appi. Math, Vol. 9, 1961, pP

18-27. In diac-asing the use of two separate models with various Air

Force organizations, one author has pointed out the coMDutational advan-

tages of network flow models over more general mathematical programming

models, and has become aware that many operations analysts waat to better

und -stand the Out-of-Kilter algorithm; see E. P. Durbin, An Interdiction

Model of Highway Transportation, The RAND Corporation, RM-4945-PR, May

1966; and E. P Durbin and Olivia Wright, A Model for Estimating Military

Personnel Rotation Base Requirements, The RA D Corporation, RM-5398-PR,

Occober 1967. This present Memorandum describes the operation and capa-

bility of the Out-of-Kilter algorithm under the assumption that the

reader is conversant with basic linear programming. It should be useful

to analysts and planners interested in a versatile modeling concep>t and

computational tool.

D. M. Kroenke is a cadet at the United States Air Force Academy,

and coauthored this Memorandum while on temporary assignment to The RAND

Corporation.
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SUMMARY

The analog of steady state flow in a network of nodes and arcs

may describe a variety of processes. Familiar examples are transpor-

tatiox , systems und personnel assignment actions. Arcs generally have

cost and c'pacivty parameters, and a recurring problem is that of

determining a minlmum cost route between two points in a capacitated

network. If a process can be modeled as a network, and the criterion

for evaluating performance of the process can be related to the variables

corresponding to flow in the network, then determining a minimum cost

fPow is * quivalent to determining an optimal set of variables for the

process.

Efficient and general methods of solving the minimum cost flow

problem are therefore useful and important. Fu. rson's Out-of-Kilter

Algorithm is an extremely efficient and general method for solving

such problemi's. The aIgorithm operates by defining conditions which

must be sati6fied by an optimal "circulation" in a network -- roughly,

a flow which satisfies capacity rstrictions on all arcs and also

satisfies stated conservation of flow conditions at all nodeb. When

such an optimal circulatijn is detennined, all arcs are "in-kilter."

At some poi.nt in the operation of the algorithm, if such a circulation

does not yet exist, some arcs are 'out-of-kilter' -- hence the name of

the algorithm. The algorithm arbitrarily selects an out-of-kilter arc,

and tries to rearrange flows to bring that arc into kilter while not

f)rcing any other arc farther out-of-kilter. If the out-of-kilter arc

can be brought into kilter, the algorithm selects another out-of-kilter

arc and repeatis -I-e process. Since there are only a finite number of

arcs, repetition of this procedure eventually results in an optimal

solution. If any arc cannot be brought into kilter, the problem cannot

be solved.

The Out of-Kilter algorithm also solves the special network problems

of finding maximum flow between two nodes in a costless, capacitated

network, and finditig the shortest route between two points in L network.

4
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I. NETWORKS

Steady state flows in networks may represent many physical and

nonphysical systems. The complex of freeways shown in Fig. 1, linking

New York, Chicago, St. (,ouis, Denver, Los Angeles, Houston, Seattle,

and Washington, D. C., is a network. The vehicles moving over that

network may be considered homogeneous units of flow. Alternatively,

this network might describe a petroleum distribution system. Flows in

networks can also represent communications between people in an organi-

zation, inventory and production smoothing processes over time and as-

signrent of personnel to jobs.

ID.C.

* Fig. I -- A Network Linking Cit is
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The common elements of these situations, and hence the abstract

definition of a network, are a collection of points called "nodes,"

(the cities in Fig. 1) and a colle'-tion of "arcs" wh..ch connect these

nodes (the highways or pipelines in Fig. 1). We denote the nodes by

single lower case letters; for example, node i, and identify the arcs

by naming the nodes they connect, arc (i., J). Some hc'mogeneoufE com-

modity (vehicles, petroleum) can flow over the arcs, and we denote by

x the amount of commodity flowing on arc (i, J) from node i to node

j . If x , < 0 then the commodity flows from j to i.,

In most network problems, arcs have cost and capacity character-

istics. Generally, some cost is incurred to move a unit from node i

to node J, and we denote these unit mo-vement costs by cii. Tis may

be dollars per unit pumped in the Petroleum distribution netwrrk. We

also frequently find that flow is lirtt-d by tipper bounds or capac-

ities on the arcs. For example, only itmited number of vehicles per

hour can move through the Lincoln Tunnel, and a limited n~imber of

barreI6 fr day can move througn the pip-l 1 ine from Houston to St. Louis.

We denote these maximum arc capacities u,,. Vhere may also be a re-

quirement for a minimum amount of flow alln~ any arc. We denote t'iis

by t j Imposing this condition allows us to construct networks with

control lcd flows that describe part icular problems , or that may deFcribe

actual minimum demand levels at points in a comimidity flow network.

To summarize, a network is characterized by nodes , i; arcs between

the nodes (i, J); flow across the arcs, x ; Imit costs of flow across

the a rcs , c1  u pper b)ounds on fliow across the a rcsut i ; and lower

bounds on flow arcross the arcs , tij These characteris tics can comn-

pleteiv 6-iaracterize steady state flow in a netwo-rk.

In a problem -with no costs, we allow c,- 0. In a problem with

-0 lower bounds but flow only ii one direction, we allow t -&.if

there are no tipper bounds , we al low u; - + M. We ilurther ssume that

all costs flows , and bounrdb are integers. Thifi isi not an oVv% st rong

asbi:mption. since it all nlmmh~ors are ratiOnIA!, clearing fractionb. will

.ie Id interis. For CoMp~tat[i0!al purpOses r-estrict iOn to rat jona is

sutureCS. The asf-umrption of integral-valued parameters is used t

demontitrale convergence ot the Out -.of-Kilter algorithm.



-3-

A general network problem is finding a minimum cost circulatio n

in a network with arc capacities. in Sec. 11 we explain Fulkerson's

"Out -o f-Kilte9' al1 genthKm developed to solve thris p~roblecm. The problIem

requ ires teat we find flows , xi,, that iriinxmize total cost

()Z c X i, ior all i and j~
ij 1

while at the same time satisfy the constraining! conditions

(2) 1 m x. , u, for all i and j

and show thlat in a circulationl, What goets into a node rimst come out ot

the node. This is reprtesenttd 'byv

(3) Ex Z = 0 for all i.

While there at, several ways v-f solving this problemr, and it' may

he conceptually viewed as a lioear pormigproblem, thu, Out -of -Kilter

algorithm is both the moKst gene-ral of the specialized alfgorith-'Is and is

tar mnore efficient here thain a stantird lineairptrai rhn

world be. ;We dislw ss som a! blL:orhe Ot-ofL-Kilterilr'tr

in Sec. 111, and note hIere only. two resn or emphas iz rz i s 1-1iit v:

k) mll pro'blems solvable by the inor ccs p- iiiz' net UA rk lctVirsK

(mkaX mu"m f lowt rrourgtra capaIci1tatc rct net ' -sort est rou'te ' V a

n'et;Ark , etc.) are solvable byv the 0-'t -ot-Rilher aloih',and an

unesad u tit a ilows colusttrue t iont Ir 'IIC r11e (ttICient', speIC ma I iz ed

alori t hms (2 rr8 problems axeSs;i o. ag oK tixl o

pr~tat tonally byv linear por iicalio'or it titus onm currerr o"p ti

Prole trmu1lor ionl as a nctworr I'f t setclr of';'r tat tona-l ar'nIvsis

bfit, Out -t' -Km I t er a I go It hm .
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II. THE OUT-OF-KILTER ALGORITHM

INTRODUCTION

A set of flows, x that satisfies flow constraints (2) andiJ'

conservation of flow equations (3) is .alled feasible. In attempting

to find a minimal cost feasible circulation, the Out-ot-Kilter algorithm

(OKA) operates with both arc costs, cij , and "v le prices," -i which

arise from duall~y considerations. We assume the reader has no knowledge

of duality theocy, and attempt to make the existence of the node prices

plausible and their nature clear by means of an economic explahation.

We have previously described the minimal cost circulation vrcblem from

the point of view of a producer or distributor. Consider the petroleum

distribution network of Fig. I. Assume some regulatory agency, say the

"Federal Petroleum Distribution Commission," has set this distributor

a variety of minimum and maximum flow levels on various route segments.

The minimum flow levels may reflect consumer dmands at points in

the network, whereas the maximuu, flow levels may reflect physical rou e

capacities. The distributor knows the unit transit chargeq on each

route segment and must decide the route structure -- arcs and the amounts

moving on each arc -- to meet the induced flow requi .ments on all arcs

at minimum transportation cos.

The minimum flow levels on varlouc route segments have presumabi)

been established at the insistence of 2nsumers. Therefore let Ti

denote the price a conumer at node 4 must pay for a unit of pctroleum.

The i will be related to the amount demanded at some nodes, since as

the amount demanded increases, the overall difficulty in supplying it

will increase.

The Commission recognizes that the ,rice of petroleum to the con-

sumer in ea-h city of the network should be related to the distributor's

overall cost in establishing the entire route structure, and not re-

latcd to just the transportation costs connecting the source and node f.

For a further discussion of duality see L. R. F.,rd and D. R,

Fulkerson, Fluws in Networks, Princeton University Press, Princeton,

New Jersey, 1962, pp. 26-30 and pp. 113-115. Also see W. J. Baumol,

Fconoinic Theory and Operations Analysis, Prentice-Hall, New York, 1965,
Ch.ap. 6.
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Neither the dis.ributor nor the Commissicn are initially sure what

these node prices ought to be, but the Commission -- hopefully

concerned with consumer welfare as well as producer profit -- intends

to see that consumer costs are no greater than necessary to inducE the

distributor to establish the route.

The OKA may be pictured as a sequence of systematic decisions the

distributor makes with the Distribution Commission watching carefully.

At each step the distributor asks, "2,ich route shall be used to mini-

mize total system costs, taking account not only of transportation costs,

but also of the commodity prices at the various cities?" If there is

no profitable route at some step, the distributor tells the Commission,

"You must now allow increased prices at some cities in order to make it

financially pcssible for me to continue conatructing a route." The

Commission answers, "Okay, but let's find that route which requires the

minimum price incr.-ase."

Based on this fanciful exchange, we associate with each node. i,

a variable, i that can be considered the price of a unit of the flow

commodity at the node. The Distribution Commission defines a net arc

cost, c j, as

(4) cij - cij + TTi - r

The new cost, ci , , represents the total cost to the system --

consumer and distributor -- of transporting one unit of flow from node

i to node j. This definition compares the cost of retaining a unit at

node i with the cost of moving it to node j. In moving a unit of flow

from i to j, the commodity price at i, T is foregone, and an actualii

transportation cost, c W is incurred. If the sum of these costs is

greater than the commodity price at j, "V then it does not pay to ship

a unit from i to j. The cij will be positive. On the other hand, if

a unit at j costs more than at i plus the transportation cost, cij will

be negative -- the system benefits from the move -- and shipment from

i to j is profitable. If the value at j, , is balanced exactly by

the valie at i plus the transportation cost, (- + lj) then cij , 0,

and we are indifferent to an additional unit flowing from i to j.
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Limitations on permissible flow levels (2) together with possible

levels of total system cost (4) yield the following conditions that

will be satisfied by an optimal solution to the minimal cost circulation

problem (1) (3).

(5) If c < 0 then x, - ij

(6) If cij - 0 then I < x <u.i ii - ii -u"

(7) If cij > 0 then x
iiii ij*

Equation (5) states that when net arc cost is negative (when it is

profitable to send the comm)dity from i to j), flow on the arc ought to

be as large as possible. Equation (6) states that when net arc cost is

zero, we are indifferent to flow level so long as it meets constraints.

Equation (7) states that when net arc cost is positive (a loss is in-

curred .y sending the commodity from i to J), flow on the arc ought to

be at the minimum level possible. The OKA is designed to construct a

flow meeting these conditions.

Any arc that meets the optimality conditions (5), (6), (7) is

defined as "in-kilter." Arcs that do not satisfy these conditions are

"out-of-kilter."

Out-of-kilter arcs can be grouped into two categories:

(a) Those that are feasible but not optimal. They have flow which

satisfies (2), but prices and flow do not satisfy (5), (6), (7).

(b) Those that are infeasible. Flow is below or above the upper

bound. Therefore (2) is not satisfied.

Arcs that are feasible but not optimal must fit one of the follow-

ing states or conditions.

It is not necessary to consider as a special case ci < 0 and
xii < or c 1 >0 and x > ui, These cases, though inleasible,

are included in conditionsI and If. If the algorithm terminates with
all arcs in kilter, any originally infeasible arc in state I or II will
not only be feasible but optimal.



Conditirn I; C < 0 and! x <u
uij"

Condition I: cij > 0 and x j > lj"

Infeasible arcs fit one of these conditions:

Condition III: cij > 0 and xij < tj"

Condition IV: c j ,. 0 and x j < ij.

Condition V: c - 0 and x > uii iji j

Condition VI: c < 0 and x >U

A "kilter-number," as defined below, is associated with each arc,

Arc
Condition Kilter Number

I........... 1 Fx - uij]
-i i

ii.......... CijLxij - ]

III, IV ..... [f
ij - ij-1

V, V1 ....... [xij - uij]

Notice that in all cases, the kilte: number is positive. For the

feasible states, I and II, the kilher number is a measure of non-

optimality. The kilter number for states III - VI indicates the degree

to which an arc is infeasible. In-kilter arcs meeL conditions (5),

(6), or (7), and therefore have a kilter number of zero.

The OKA operates by arbitrarily selecting an out-of-kilter arc and

rearranging flows in an attempt to r.duce the kilter number of that arc

to zero. During this process the kilter numbers of other arcs do not

increase, and may in fact decrease. The algorithm terminates with an

optimal solhtion when kilter numbers of all arcs are zero. Optimality

of such a solution is verified by recalling the definition of c and

noting that a kilter number of zero implies Eqs. (5), (6), and (7) hold.
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It is slightly more complicated to show that the algorithm termi-

nates. The algorithm selects one out-of-kilter arc at a time and

attempts to bring that arc into kilter by rearranging flows without

forcing another arc out of kilter. If this process can be completed,

the algorithm seeks another out-of-kilter arc. If it cannot be com-

pleted, the problem is infeasible. If it takes only a finite number

of steps to put an arc into kilter or to determine infeasibility, and

there are only a finite number of arcs in the network, the algorithm

must terminate. We will later indicate that these conditions are

satisfied,

OPERATION OF THE ALGORITHM

Once the minimal cost circulation problem (2) has beep formulated,

the OKA can be started with ! set of node prices, T7,, and !n circu-

lation which satisfies the conservation of flow equations (3). This

circulation and set of node prices can initially be zero. Arbitrarily

select an out-of-kilter arc joining two nodes, say s and t, The fact.

that th,: arc (s, t) is out of kilter indicates that it is either profit-

able or necessary (or possibly both) to ship an additional unit from

t to s or from s to t. In either event, flow change is always desired

for an out-of-kilter arc. In order to change flow on the arc and yet keep

flow in the network balanced (3), another path through the network from

t to s must be found along which flow values, xW, can be changed. In

constructing this path, t,. pieces of information (a "label") must be

i'etained at every node. The first component of the label at a given

node i indicates the previous node in the path, and whettmr preset flo'.

moves from i to j, denoted (i+), or from j to i, (i-). The second com-

ponent of the label is the amount b, which flow on arc (i, J) is to be

changed, C(J). A complete lab,l at node j is

[i±, E(J)7.

The search proceeds from node t thr,ugh the network seeking a path back

-o S. "Labels" are assigned to various nodes so that when a path is

found connecting t and s, the labels indicate the direction and magni-
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-ude of necessary flow vb.,Yng along the path. Of course not every

)de will receive st label in thNis process. Circulation from Houston to

St. Louis cAn be completed by arcs from St. Louis to Washington and

Washington to Heutiton. Sv q tle and Los Angeles, for example, would not

receive labels.

If a path connecting r. And s is not found, the algorithm determines

new node prices, f 1,, in SuL. a manner that (a) another node will be

labeled in the partial (t, s) path, %b) one less arc will be con-

sidered for inclubion in the (t, a) path, or (c) if no arcs remain and

the path is incomplete, the problem is deemed infeasible.

We next explain some of the labeling rules that are used in at-

tempting to find a path in the network from t to s. If a path is

found we term this "breakthrough." Assume that an arbitrary arc (s, t)

is in state I, with c t < 0 and x < u . Since cst < 0 it is profit-St St St

able to increase the flow, xst. We begin at t by assigning node t the

label [s+, g(t)l where

(8) (t) u - x at

This indicates that flow on this arc should be increased by c(t) in

order to be equal to :he upper bound, and hence be optimal. See Fig. 2.

<t0, t

< 'stL$+, c(t)1
xst < 8 t

Fig 2 Initial Flow on Out-of-Kilter Arc (s, t)

We describe cases I and IV. The rules are only slightly different

in the other cases, and the method remains basically the same. The im-

portant sipecial network flow problem which case IV covers is the "capaci-
tated transportation problem." Section III describes operation of the
algorithm in this problem.
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The algorithm next seeks an unlabeled node adjacent to t, say J.

Assume cunditions on the arc (L, J) are either

(9a) c > 0 and x <tJ ti ti

or

(9b) c !0 and xtj <

In either case we desire to increase flow enough from t to j to correct

infeasibility or nonoptimality on the arc. We therefore assign node j

the label [t+, e(j)7. If condition (9a) holds, we have

(1 ) c(j) = min[E(t) , f - x

while for condition (9b) we have

(lOb) e(j) = min[(t), u - x 7.tj tJ

The cl(j) state the maximum amount by waich we can raise flow on the

arc (t, j). See Fig. 3. We would like to increase x by (It - x )t t j tj
in cast, 9a. And we would like to increase xtj by (utj - tj ) in case

9b. Ptit at the same time the previous label at t states that we want

to increase ±low on (s, t) at most b', the amount c(t). Thus we compare

tk,) wit'l the new value computed by (10a) or (10b) and select c(j) as

the minimu - of the two values -- the maximum amount by which we can in-

crease flow along both arcs without violating the feasible bounds or

optimality conditions on any arc. This guarantees that flow changes

will not increase the kilter number ot any arc.

t s+, 3 (t)

s j

Fig, 3 -- Carrying Forward a L.i ,



Assume that we next encounter an arc connecting nodes s and J. We

have then completed a path from E ro t to j and on returning to a !long

the path we wish to increase flow. Thus far the flows encountered have

been in the appropriate direction--s to t and t to J. Suppose, however,

that flow on the arc (s, J) is moving from s to j, and that arc (a, J)

is in one of the following conditions:

(11a) csj z 0 and x > IsjSsj

(llb) csj < 0 and xaj > uej

We then assign the label [J-, C(s)] where

(12a) c(s) = min[c(j), xsj - ft sI if (lla) holds

or

(12b) e(s) - minTc(j), x sj- u j if (l1b) holds.

In either case we want to increase flow on the directed path s,

(s, t); t, (t, j); J, (J, ) by the amount c(s). We therefore decrease

flow, X by the amount c(s), This is equivalent to increasing iiow

in the desired direction (see Fig. 4) by c(s). Recall that c(s) is

the iiaximur,, amount by which fl:w ov all arcs can be increased without

increasing any kilter number.

We have now broken through -- found a path from t to 6 through the

netwrk , ar d ha ve determinec r(s) , the maximum amount by which flow

*l

Consider the petr, e'jtr distribution network of Fig. I. Assume
present flow is 6 units from Houston to Denver and 4 units from Hiouston

to Washingtou, D.C. Ii we desire to increase fl;-w from Denver to
Howston by 2 units, it is rot reasonablt to send 6 units from Houston
to Denver and at the same time to send 2 units of the same conindity
from Denver to Howston. it would be more profitable to reduce the
flow from Hoistor to Denver to -# units. This "inc reases" the flow
from Denver to Ho:iston by reducinig the amount Houston must ship to
Denver, and is an example of increastng forward flow by decreasing
reye rs c f low.
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t [s+, e(t)l

nj-, [(s) t+, e(j)]
s j

F'b. 4 -- Labeling an Arc with Reverse Flow

along this path can be increased without violating optimality or feasi-

bility conditions. The algorithm now changes flow according to the

label at each node. At t we increase flow from s to t by c(s), At

j we increase flow from t to j by c(s). And at s we decreabe flow

from s to j by e(s). Flow from s to t has now increased by E:,,). The

amount of flow augmentation, c(s), was chosen by considering for each

arc the amount by which flow could change without violating feasibility

or optimality conditions. Therefore, on at least one arc, the one

yielding the minimum of the e(i), flow has actually been set equal to

an upper or lower bound. Reviewing the definition of the kilter

ntmbers for conditions I - VI, and the flow augmenting rules, note

th.' floi augmentation makes flow on at least one arc closor to a bound,

and therefore at least one kilter numiber has decreased.

We summarize operation of the algorithm to this point. After

starting with an; circulation and node prices, we arbitrarily select

an out-of-kilter arc -.,, t) and label it t. We next examine all nodes

adjacent to t , determin e if ilow on arcs to these nodcs could be ap-

propriatelv moditied to help bring (s, t) into kilter, and label the

nodes using rules 9 thrxnugi 12. For each node so laheled we attempt

to repeat this labeling process until a path retorn iing to s lb iound.

Flow along that path is the, an m'pnte i by the maximumi, feasible amount,

c(, O, which is the minimum of feasible a::ounts along all! arcs on the pat!K.

The kilter number will not necessarily become zero on any new arc.
it the minimum C(I) occurs on an a,:c originallv satisf-lnyig Eq. ((),
with original kilter number zero, the kilter '.umber of that arc will
remain zero, a::d kilter nrmbers on other arcs will decrease, tnt iiot
necessarily to zero. Not ice also that since flow changes by a n, in-
teral value and since all costs and prices art integers, kilter

t:mieors dccrease ov integral amiunts
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All labels are now erased, and arc (s, t) is examined again. If

that arc is in kilter, we seek another out-of-kilter arc. If (s, t)

remains out of kilter, the search and label process is repeated. The

same path from t to s will not be chosen again because on at least one

arc of that path, flow is at an upper or lowt.r bound. If all arcs are

in kilter, the optimality and feasibility conditions (5), (6), and (7)

are satisfied, and the algorithm has terminated with an optimal selutioLI

to (1), (2), and (3).

Labeling rules for out-of-kilter arcs (i, j) in states other than

I or IV are similar. When flow on arc (i, j) should be decreased (states

I!, V, VI), the labeling process starts at i, attempting to move along

a path through the network to j. An out-of-kilter arc in state III is

treated as one -" state I or IV, except that e(j) -.. - x, the imount

of flow augmentation needed to remove the infeasibility.

NON -BREAKTH ROUC 7i

Given an out-of-kilter arc (s, t on which we want to increase flow,

out" ability to find a path through the network from t to s has depended

cu the availability of arcs (i, j) in one of two conditions. On an arc

i, J) either we ')oth desire to increase flow x.. and are able to, or

we both want to decrease f'ow x and are able to. If, in attemptingji

to find a path for a given out-of-kilter arc (s , t) , we have labeled all

nodes we can by rules (9a), (9h), (Ila), (ilb), and have not returned

to node s, we havo a "non-breakthrough.

There are two possible difficultics. Either (1) the net arc costs

c provide i nsufticient incentive for a distribtitor to move the con-

mrditv through the network, or (2) no augmentation is possible because

flows x are equal to upptr bounds and flows x are equalI to lower
i

bounds. It cast. I occurs, we will systematically Thangv prices i n

a way to be described, recompute c 1 , and again try to '-reak thr,:ugh.

if case 2 occurs w muetst declare t he prblem i.feabible,. T1i b i n-

feasibility .ar be seen sin~e we rathed tnis point b% atte:npt ig
bring an out-ol-kilter arc (6. t) into kilter. The fact that the

(s, t; as a positive kilter nurnber inidinates that either optimality

c0,ndit ions or teaSibi it v conitions art not sat isitC: n it. If the
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pioblem is feasible, and only the optimality conditions fail to be

satisfied, the repricing of the Ti will eventually bring cat to zero,

and hence bring the original arc into kilter. The problem is in-

feasible, however, if flow xt is outside the bounds (i , ust ), and nostst St

path through the network exibts to change ttat flow and bring xst

within bounds.

To look more carefully at this non-breakthrough situation, con-

s der the various arcs that can be used for a breakthrough from t

back to a. Arcs connecting labeled nodes to labeled nodes are

already in the path from t to our present positic. They cannot be of

further use. Arcs which connect unlabeled nodes to unlabeled nodes are

of no use, since we h.ve no means of extending our path to these arcs.

Therefore , we need only consider arcs that connect labeled to unlabeled

nodes.

This iteration started with an out-of-kilter arc (s, t) in condi-

tion I or IV, and we have bee, attempting to move flow forward from t

through the network to s, and have stopped at a labeled node, i. If

arc (i, j) is to be potentially useful, its flow must be less than

capacity (x < u i j if x ij " 0) , or ii flow is moving in the direction

opposite to our path, that fl.w imust be greatt-c rhan the lower bound

(xji > 1,t). In the former case we cau in, crease forward tlow, aid "iu

the latter case we can decrease reverse flow. In either case a useful

arc is one that Increaseb net forward flow. For forward flo' arcs
(i, j) with x . < , Iu kr reverse flow arcs with x "" con-

J t X j < U j id con-

ditious (qa) ( , (l4a . lb" 1:ot bh sa is idt . 0, herise c

rules 10 and 12 te noes j would have received labels. In CIher words,

the c.rrent cost stricture is incorrect.

Arcs with forward flow below capacity kx < u1.. have F sit ',e

pet arc cost \c . therws , b ru 9b', both nodes would e

lahe lea. Su.-h arcn :.m.st also have x " .. ,r . ta both nodeh

w,u d be labeled. Arcs with :-everse flow above the lowe,- h,, d

It here ar no) such aria and 1b, lower r id
t Ive tir proble7 is ir:."easible. For s flows in tim:.
ther network nodes, b.t no netw -rk rode ever flows back to S.



(x P must have negative net arc cost (C j < 0) because of

rule (Ila) , and must have z i uj because of ruie (l1b). Thus , the

arc conditions that must exist on arcs connecting labeled nodes, i,

to unlabeled nodes, J , in case of a non-breakthrough are

(13) c > 0 and t' j !9 X u~ jj
(14) c i< 0, 1 i xi "iu

Equations (13) and (14)~ represent arcs that may vet be useful in

breaking through to t1- starcin,,, out-of-kilter arc (s, t). The arcs

are useful since it is xassible th--at flow can still be modliied on them.

Recall that Eq. 4 defines c,

ij ii j1 "i -j*

The potentia lly useful forward arcs have not been us, d since c- > 0.

This statez that the value given up at node i. -C plus the cost of

movin,, an additional Unit Of' tlOW to , . eater* than ,the

value, of havinuc the unit at 1. It does not pay the dfiuribhotr to, scuPd

it. For a reverse arc satlsfvin,. 114) it does not pa v to, reduct h-ack t 1 ow.

A t Ithis Poi n! , howe ver ,pa th cons t ructf ior 1has halt ed , a nd -there

w il I e n pah trou ghI t he -iet wo rk t ron7 t to ; unlIes s it lbeco- pos s-

u&e tue a pre%-i o us Ilv unu,,sed a rc s.-it is t i ng 13 ) o r I~) an to

lab I a t 1 eagt onle pr-ev ious l v u 7. lheilek n.ode. WU Will 1.ccomplish this

by maisinj the price ot theo od itC at11 lt ; uLabe led nodes,

This will m~ake it Y-Vir- profitable to Ship toward the lale nodeo

tor1walrd arcs ( increase X or to reduct: lo w aWa~ tr -n the u:,idbvlt'd

node li- re verse a rcs ( reduce x ) 1 Tis8 rep iV r. ' r ac cu cor vd

L a .,r d~,ilk ap ia "M7' 1h Vo uc ' r1 I C 1' t roi--hs:iutL

n C bI fl'i j: .1 g

I not Ii v
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We can get flow moving again on. at ea.t one appropriate forward

arc by finding the minimum c on all the forward arcs, say b, , and
ij

adding this to at all unlabeled nodes. This would result in a new

system cost on each orward arc:

ci = c 4- - ( - +

And on the arc that yielded the minimum,

"" ( c .. c - i .. = .

By labeling rule (9b) this last arc can be used, since at system cost

of zero we are indifferent to changes in flow. Therefore, node j can

be labeled. This action has essentially cost tne consumer and the system

per unit of flow arrivi-Q at j, which we have had to add to ti-.e price,

at the unlabeled nodes.

It might have proven cheaper to reduce back flow on one of the arcs

(j, i). This could have beer, accomplished by finding b thL magnitude
2'

of the smallest negative cost (minicji ), and adding b2 to all node prices,

7., at unlabeled nodes. On each relevant arc with reverse flow this
j

would have resulted in a new system cost given by

(15) c1 i = C + - ( + b 0) .

On the arc yielding b the minimum magnitude,

(16) c ji = cji + - - - c. = 0.

By labeling rule (Ila), this last arc can be used to augment flow and

node j can be labeled. The pricing procedure has essentially cost the

consumer and the sysiem b2 per unit. If b2 is less than bI we should

use the second proccdure. In general, then, the aigorithm finds b I and

h, from the arcs defined by (13) and (14), selects b (the smaller of

I and b 2 ), and increases node prices at all unlabeled nodes by an

arnount b.
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Repricing actions have allowed the distributor to add another arc

to the (t , s) path at some cost to the purchascrs but at the minimumn

cc-st to those Dtrchasers. Following the repric ing procedur- , tI e

algorlth wks thL original out-of-kilter arc (s t if it iF still

out of kilter, the search for a path back to node t is repeated. We

sum:7arize the algorithm to this point. Arbitrarily ,elect an out-of-
kilter arc (s, t), and by means of the labeling procedure attempt to

find a path through the network fi-om t to E. If such a path is found,

appropriately modify the flow along each arc of the path by the amount

determined in the. labeling process. If a path to s is not immediately

found, consider all arcs that are potentially useful in extending the

nath from t. Modify the node prices on these arcs so that one of these

is used to extend the path and continue the labeling procedure. If there

are no arcs connecting labeled to unlabeled nodes that satisfy the con-

ditions (13) or (14), then no path is possible and the problem is in-

feasible. Once this particular arc is brought intc kilter, the algorithm

continues until all arcs are in kilter (which signifies an optimal so-

lution to the original problem) or until it is impossible to construct

a feasible circulation.

TERMINATION Ah) OPTIMALITY

The OKA concentrates on one out-of-kilter arc at a time. Each time

a breakthrough to the out-of-kilter arc occurs, the labeling rules in-

sure improvement in kilter numbers on every arc in Lhe path, including

the out-of-kilter arc. We have mentioned the assumption that all values

are integral. Kilter numbers therefore improve b integral amounts at

each breakthrough. Tb's, only a finite number of breakthroughs are pos-

sible before the arc is in kilter. There are only a finite number of

arcs. If the algorithm is successful in bringing every arc into kilter,

the solution is optimal by (5), (6), and k7).

The remaining situations are the non-breakthroughs. When a iion-

breakthrough occurs and potentially useful arcs exist, price zhanges are

made and at least one of the poLentially useful arcs is used to extend

the path. Since there are only a finite number of arcs, we must
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eventually either break through or discover there are no potentially

useful ar:cs left. in the forme.- case, we decrease the kilter number

of th- original out-of-kilter arc; in the latter, we declare the

Droblewn infeasJbIE .
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II!. USES AND SPECIAL CASES

While networks can be used to model a variety of actual problems,

ingenuity is often called for in formulating the network to describe

the problem. If the network can be properly formulated, however, it is

far mcre efficient to solve a minimal cost circulation problem than the

,-iuivalent linear programming problem. Furthermore, we frequently need

to examine the behavior of A solution as the parameters vary. As,

Fulkerson points out, the Out-of-Kilter algorithm is designed to start
with any circulation and any set of node prices. Therefore, a previously

derived -ptimal solution can be used to begin a new problem with re-

sultant savings in computation time.

IWe have dccribed the OKA for cases I ard IV. The important special

network flow problem case IV covers is the "capacitated transportation

problem," or the shipment of a fixed level of flow, v (possibly maximum

feasible flow), through a network from node s to node t at minimum cost.

In this special case we can start with all flows equal to zero, and all

node prices equal to zero. On a "return" arc (t, s) we set the lower

bound, t, equal to the upper bound, u, equal to the desired flow value,

V. Then the arc (t, s) is out of kilter since the initial flow, x - 0,

is less than the required flow, its - v. The cost, cts, may i itrarily

be set to -c, causing arc (t, a) to be initially out of kilter in state

I, or cts may be set to 0, causing arc (t, s) to be initially out of

kilter in state IV.

We mention two other important special cases of the general minimal

cost circulation problem. The first is determining maximum flow in a

capacitated network, and the jecond is finding the shortest route through

a network in which costs on arcs are times or distances. While there

are specialized algorithms for each case, the Out-of-Kilter algorithm

handles either, and in the process indicates how to construct a mote

specialized algorithm.

In order to use the OKA to find the maximum level of flow in a

network from node s to node t, we take the following actions:

Ford and Fulkerson, p. 162.
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(1) add an arc connecting t to s.

(2) set IiJ - 0 for all i and j.

(3) set c = 0 for all i and J, exLept C ts

(4) set ct -M where M is very large.

(5) set x - 0 and -i - 0 for all i and j.

(6) set u M where M is very large.

On all arcs except (t, s), costs are zero, node prices are zero, and

flow is feasible and zero. Arc (t, s) has a negatively large cost and

flow below its upper bound, and is therefore out of kiltcl, while all

other arcs are in kilter. By the labeling -iles, all arcs other than

(t. 6) will stay in kilter.

We first label node s, [t+, u - x , and search for nodes which

can be labeled from s. There are initially several, since c. 0 and

x < u on all arcs (s, j). We continue the labeling process until
Bj - si

the!re is a breakthrough. We then augment flow on the breakthrough path

b\ the OKA rules.

Since we assigned the capacity on the return arc (t, s) a very

large value, the arc will still be out of kilter. Therefore, repeat

the labeling process and further breakthroughs will concinue to augme:rt

flow from s to t. Finally, there will be no path from s to t on which

every arc has flow less than capacity. At this point the algorithm will

consider all arcs connecting labeled to unlabeled nodes, select the

minimum cost, cij, on theie arcs, add this vaije to all node prices,

on the unlabeled nodes, and attempt to laDel them- Generall , a labei

would be assigned to at least the forward node of the arc on which the

minimum c had been found, for the new cJ on that arc would be zero.
i-iJ

In this cafe, however, flow equals capacity on all arcs connecting

labeled and uP'ib hled nodeb. Consequently, e.ven with the 'repric ijg,"

T'.o new labels will be assigned, The algorithm will once again consider

all arcs connecting labeled to tiniabeled nodes, but there will be at

If a solt ion it possible with p's tive flow ." 0 on s' pa tI

there will he a breakthrough.. since initi-illV flow, onll arcs s zero.

c <" 01 "in. , is negat ivelv v r; large, uo. x .

These arcs will now have x - u
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least one less arc , since by or repricing, at least one cii now equals

zero. The oKA will thus continue to look at arcs ccnnecting labeled to
unlabeled nodes which have c 0, it wi11 increase *., and continue to

remove arcs from further consider,..ion. Evtntually the only arc left

for consideration 4i h a labe!ed and unlabeled node will be (t, s).

At this point, "- is increased by a sufficiently large number so thfat
- ** t

c = 0. Arc (s, t) is now in kilter. We therefore have maximum flow

through the network.

Notice that once flow augmentation stops, we reach a maximum flow.

The remainder of the p...cess simply computes the proper prices. We

could hart! terminated the algorithm as soon as there was no longer a

flow augmenting path from s to t.

The problem of finding the shortest route through an uncapacitated

network is identical to that of finding the minimum cost path from s to

t through a network on which each arc has u ,, 1, and on which a return

arc (t,s) hasi - O,u = I, and c = -M, where M is v,-rv large.ts ts ts

The OKA will send one unit of flow from s to t at minimum cost. Assume

c > 0 for each arc. Start the problem with xij - 0 on all arcs, and

0 at all nodes. Since c_ > 0 on all arcs except ar "t, s), the

only out-of-kilte.- arc is (t, s). By the labeling rules, node s is

labeled "t+, (s), where c(s) = - x - 1. The algorithm then
ts ts

attempts to label nodes from s , but since c,. O, it cannot, It there-

fore revises all at all nlabeled nodes by adding to then, the mii imim

Co. Cost on at least one arc (s, j) then oecomes c ,, and onii}

this arc flow is less than capacity. The orward nke, , , thij; arc

receives the label 's+, c( ', where c(j) , mmnIs), u x Since

o is 1, c( p - (s), which wa 1. This indicates that the seco.id label

at all labeled nodes will be one, and the problem 16 only onk, o? oreaking

through on some pact-. The algorithm continues forward from all labeled

nodes, finding all c ', and being forced ,o increase by the ap-

propri a t , m i ; ; c.. Thi!, then allows labeli-i one more arc !,-.ward.

Eventuallv, node t is reached, and flow along the breakthroigh path s

It will be the last one because c -M, ( - Me, where M is
very large. Hence. ' "t - " ""s

This is the feis ib le but rinept ira I condition described .n page 14.
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increased by one unit. All arcs along the path are in kilrer since

c , 0 for each arc on the path, and x j A Uij. To find the shortest

route (or minimum cost path) we need only trace back through the network

from t to s, using the first component of the labels. The length o-

cost of this path is given by T .t
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